Undergraduates develop next-generation intelligence tools  !!

In Covid-19 pandemic has driven us apart physically while reminding us of the power of technology to connect. When MIT shut its doors in March, much of campus moved online, to virtual classes, labs, and chatrooms. Among those making the pivot were students engaged in independent research under MIT’s Undergraduate Research Opportunities Program (UROP). With regular checking of their advisors via Slack and Zoom, many students succeeded in pushing through to the end. One even carried on his experiments from his bedroom, after schlepping his Sphero Bolt robots home in a backpack. “I’ve been so impressed by their resilience and dedication,” says Katherine Gallagher, one of three artificial intelligence engineers at MIT Quest for Intelligence who works with students each semester on intelligence-related applications. “There was that initial week of craziness and then they were right back to work.” Four projects from this spring are highlighted below.

Learning to explore the world with open eyes and ears……

Robots rely heavily on images beamed through their built-in cameras, or surrogate “eyes,” to get around. MIT senior Alon Kosowsky-Sachs thinks they could do a lot more if they also used their microphone “ears.”

From his home in Sharon, Massachusetts, where he retreated after MIT closed in March, Kosowsky-Sachs is training four baseball-sized Sphero Bolt robots to roll around a homemade arena. His goal is to teach the robots to pair sights with sounds, and to exploit this information to build better representations of their environment. He’s working withPulkit Agrawal, an assistant professor in MIT’s Department of Electrical Engineering and Computer  Science, who is interested in designing algorithms with human-like curiosity.

While Kosowsky-Sachs sleeps, his robots putter away, gliding through an object-strewn rink he built for them from two-by-fours. Each burst of movement becomes a pair of one-second video and audio clips. By day, Kosowsky-Sachs trains a “curiosity” model aimed at pushing the robots to become bolder, and more skillful, at navigating their obstacle course.

“I want them to see something through their camera, and hear something from their microphone, and know that these two things happen together,” he says. “As humans, we combine a lot of sensory information to get added insight about the world. If we hear a thunder clap, we don’t need to see lightning to know that a storm has arrived. Our hypothesis is that robots with a better model of the world will be able to accomplish more difficult tasks.”

Related posts

Leave a Comment